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OUTLINE

e Soft radiation at hadron colliders
e Soft radiation in Drell-Yan and electroweak annihilation
® Factorization at the eikonal level

¢ Factorization at the next-to-eikonal level.
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SOFT RADIATION AT HADRON COLLIDERS




SOFT RADIATION IN DRELL-YAN AND ELECTROWEAK ANNIHILATION

Multiple scale problem:
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SOFT RADIATION IN DRELL-YAN AND ELECTROWEAK ANNIHILATION

100 } Becher, Neubert, 2007

* Does it matter! One can consider two regions:

» threshold:
Al — Iy — 1,
* not relevant for phenomenology:

ff(y,upr)

* partonic threshold:

z—1, FEp—0.

* It is possible to prove that the partonic threshold is dynamically enhanced, because of the

do Ldz i
r@ N/ ?U(]CY(Zanu) *C'qq (;,,u) ‘

* where the PDFs are organised into the luminosity function

i
dx Y
9 e
CQQ(y7/*L) :Zeq/ ? (fq/Nl(aj7M)fq/N2(E7u)+qHQ) y
q Y
» Enhancement of the z — | region already for 7 2> (0.3 .t must be analysed for each process.
Bonvini, Forte, Ridolfi, 2010

convolution with PDFs:




SOFT RADIATION IN DRELL-YAN AND ELECTROWEAK ANNIHILATION

* Why needs special treatment? Have a closer look at the partonic cross section:
; A(O) o A(1) EENE ()

/ / i’ 4

< N o

ddk x / dpsk

* Virtual and real emission have infrared divergences, which cancel in the sum, leaving large

(Sudakov) logarithms, which spoil reliability of the perturbative expansion. E.g.

A ks @) 2 ¢%(1 — 2)?
o 6(1 — 2) _2 log( ) + 3 4] 4 i og( 5

_|_
* In general one has

2n—1

log™ (1 —
6(n)NZ og ( z)

anm
1l — 2

+ bpm log™ (1 — 2) + O(1 — z)}
_|_

m=0



SOFT RADIATION IN DRELL-YAN AND ELECTROWEAK ANNIHILATION

* How do we deal with soft gluons? Key ideas are factorisation and exponentiation:

sof 1
Mn(zla ¥ HMl Z’L

* Factorization: physics occurring at well separate scales do not “talk”
 Exponentiation: at leading order parton does not recoil: soft interaction give just a phase.

1
* In Mellin space, o(N, Q%) :/ hra s el R = GO )
0

* the log of the amplitude can be written as:
In[6(N, as)] = Fpy (as(Q?))

1 () O
_I_/O dZZNl{liZD[as ((1—2)2Q2)] +/ dg= 2 A[as (QQ)]}

2 q21—z

_|_

* it takes into account
Catani, Trentadue, 1989;

Sterman, 1987

In? N
+o< = )

* running of O;
» soft and collinear gluon radiation.

* In N space correctly reproduces terms an, below:
i

5(N) = i( ) [Zanm (Ne'=) +anm1m(§f@’w)

7= m=0




SOFT RADIATION IN DRELL-YAN AND ELECTROWEAK ANNIHILATION

* What about the subleading bn, terms!?
Laenen, Magnea, Stavenga, 2008

* a simple ansatz succeeds in reproducing correctly some of the bn, terms:

Modification of running

In[6(N, a,)] = Fpy (as(Q?)) /

Modification of the phase space

Inclusion of the next-to-

leading order in z of the
Altarelli-Parisi Kernel

+/22@g@2@3 Ahdfﬂ+qmu@+DO};

S 2

- indicating that exponentiation occurs at least for some of the next-to-leading terms in the soft
gluon expansion, namely, some of the next-to-eikonal terms.

* The ansatz can be understood noting that the singular terms arise from integration of the real
emission diagrams over the transverse momentum of the gluon, which is better described by the
modifications above.

* Additional terms C and D follow from Dokshitzer, Marchesini, Salam (2006), (Attempt to put on
the same ground evolution of PDF and fragmentation functions).



SOFT RADIATION IN DRELL-YAN AND DIS

» Compare coefficients of the logs obtained with this procedure with exact result at NNLO:

« for Drell-Yan Laenen, Magnea, Stavenga, 2008

0}27 CAOF nfC'F
bo3 4 4 0 0 0 0
7 11 11 1 1
b2z 2 - 5 5 33 o
239 133 11 11
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» and deep inelastic scattering:
0125» OAOF nfC’F
1 1
ds 1 - 0 0 0 0
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* Many logs are found, but not all: are they non-factorizing logs? Is there a way to systematise the

resummation for |/N logs!?




EFFECTS OF RESUMMATION

2.5---|---|---| [ 1.6_----.----
Vs = 38.76 GeV 1.5
K| MRST2002 2.0 14}
slLie 0 s e S N <" R S Rt 1.3}
_ e T U S ISkl
RS LSp === == - 12b=
KRR ' £
3 10F i 10F
g 10 12 AR o R T 1 2
M [GeV]
i ' ' ; G 0.08F
/ / A 3
LO LL & & 006}
& =
e &
0 P il Sl [l Pl (P PP I v PR (S P Pl Iereronl It I v v = >~‘ 004+
100 200 300 500 700 1000 200 300 500 700 1000 % ~
My (GeV) My (GeV) = =
& < 002}
~ ~
S S
000+

Catani, De Florian,
Grazzini, Nason, 2003

Vs = 14TeV

Becher, Neubert, 2007




1.8

1.7

1.6

1.5

1.4

1.3

1.2

1.1

0.9

0.8

EFFECTS OF RESUMMATION

Kraemer, Laenen, Spira, 1996;
Schemes 7y contains sub-leading logs

qq
dthLO ® o(qd — 1) [pb]
Vs =14 TeV 3
B, B, -
] 1 1 1 ] 1
10° 10° 10
Q[GeV]

_""|""|""""_20_""|""|""""_
L ¢,,(N) 1 (N ]
L =N ]
: :
: ! :
: 0! :
: n.=4 (x 1/160) n=4 (x 1/2000) 1
S A RN AR S U A B B
0 5 10 15 20 0 5 10 15
N N
Moch,Vogt, 2009

20



FACTORIZATION AT THE EIKONAL LEVEL




SOFT RADIATION AT THE EIKONAL LEVEL

k1R ko k
i Laenen, Magnea,
G Stavenga, White, 2010
>

p

* Consider the emission of n (abelian) gluons from a fermion line:

Mot (k) = Mofo) T B ), K= 3

» Consider one of the propagators: when k is soft expand

i S S ST SR S0
s AGUE 200G SR lits (2 i

\ . 7

E NE

* Consider leading order (eikonal):

1 1 1 !
Eﬂl...un ki — _. l’l’l S /’Ln e o o ’
(p7 ) n|p /¢ Zp'kwlp'(kﬂ1+k772) p(kw1++k7rn)

T
* Eikonal identity gives:

Z I Il 1 H 1
p-kmp-(km—l—k@)H.p-(km—l—...kwn) p‘kz’.

iy )
* This is equivalent to an effective Feynman rule for soft gluon emission:
1 e
ey = uncorrelated emission

p-k




SOFT RADIATION AT THE EIKONAL LEVEL: ABELIAN

A matrix element (squared) involves soft interactions

between two external lines:

i Py PB 50
FAB ol Z . . S Gul...,un;yl...l/m(kulj)v

* Sum over possible connected subdiagrams, each occurring N; times:

1 N ' 1 p:uq pl/r '
g i 2 : | | (7) Ay A B (2)
ein — 4+ N;! {FC } o O < ) < pB - l?“) Gul"'“”q”/l'“’/mr

q pA'kq

* This is actually an exponential:

-FAB — b0 ZFC(Z) :




SOFT RADIATION AT THE EIKONAL LEVEL: NON-ABELIAN

* In case of non-abelian gluons, one has to face the non-commutative color matrices associated
with each emission.We need to introduce first the concept of groups and webs:

% « Web: two-eikonal irreducible
Wl diagram.
o * Group: projection of a web

onto a single eikonal line.

g * One can only sums over permutations that do not affect the

orderings of gluons within groups.The eikonal identity modifies
according to

1 Ik 1
5 :

“shuffle product” — H : : i - :
sronps g P~ Ko P+ (Kgy 4 Kg,) p- (kg +...+kg,.)

-« Repeating the exercise (using induction, combinatorics and recursive definition of the color
weights), one finds the replacement

i = Z el — exp{z CHE(H)} ;

(€ /i



SOFT RADIATION AT THE EIKONAL LEVEL

* To give more feeling with abelian vs. non-abelian “webs”: consider soft form factor:

Gatheral, 1983;
Frenkel, Taylor, 1984

Color factors associated /

with non-abelian webs:
C4
ke wv»<§ W@
5 CF %

Abelian

non-Abelian




FACTORIZATION AT THE NEXT-TO-EIKONAL LEVEL




SOFT RADIATION AT THE NEXT-TO-EIKONAL LEVEL

* Ready to go: at the next-to-eikonal (NE) level one needs to take into account one NE insertion

for each diagram. Consider for simplicity a fermion line with two-gluon emissions:

1N

(Iéﬂiﬂé v p+d o prag+k h p+ Kk
R et D) 2 (D e (DR

. ) u(p),

* Expanding in the soft gluon momenta one get

L p”+p”(¢h“_ i >+ﬁ(%v”_ k2p”>
ER s B\ 2p g - 2(p-g)? ) pg \2p-iE R (R
| 8w el e Bl lGaatalionliss” = e )

p-(g+k)p-kp-q ’




SOFT RADIATION AT THE NEXT-TO-EIKONAL LEVEL

kl/ Q'u kl/ Q’UJ kl/ (]'UJ kl/ Q'u

* Emission splits into different contributions (abelian case):

e )
E(p7 )_ﬂv

. g e q°pH )
V'u pak: ( T ’
Ne: k) =5 20 T 2
> DR E gDt ¢ (D B (pr R ) g v
RM (p, ¢ k) = (p-q) Goaig) =l sl @) ( ).
p-(g+k)p-kp-q

* VN is a factorized product of an eikonal and a NE emission: the Dirac structure denote that at

NE soft gluon emission are sensititive to the spin (magnetic moment) of the emitter.VNE may
involve sums over more gluon momenta.

* R gives an effective two-gluon vertex not present in the original theory. The two-gluon emission
cannot be disentangled.



SOFT RADIATION AT THE NEXT-TO-EIKONAL LEVEL

* What does it imply for exponentiation! Remember that the key element for exponentiation at
the eikonal level is the eikonal identity,

> _E(m) =[]E(

* In the same notation, it is possible to prove that, at the NE level,

Y NE(r) =Y INER) [TE@| + Y |Rg,h) T EG)

h gF#h g#h f#g,h

* Proof by induction, considering separately individual terms in the Feynman rules written in the
last slide. Based on this results, it is possible to prove that soft real emission exponentiate:

Y o [E(G) i NE(G)} — exp | en (E(H) + NE(H))

G )

1+) exNE(K)+ ) exer R(K,L)
K K,L

=exp | » n E(H)

Laenen, Magnea, v
Stavenga, White, 2010




SOFT RADIATION AT THE NEXT-TO-EIKONAL LEVEL

* Webs can be computed by means of effective Feynman rules: (here also for scalar particles)

k
e tA(QGf—k“_ G* p* ): ta (G’-‘—l—G” _G?p“)
2p - G 2(p - G;)? 2peiC R RESR ()
p+—7;_ k _ptk Grpl
2GY + 41k GipH t4 Gios
2 tA( i A ) o (GW G! i e ),
g @ EE e p G,
i 2 G
k [
w e,
e ()
e
. l Laenen, Magnea,
Stavenga, White, 2010

_ e ay Rl R
. o wollaeg) 2p-(k+1)




SOFT RADIATION AT THE NEXT-TO-EIKONAL LEVEL

* check result for NNLO real emission in Drell-Yan, calculated using the effective Feynman rules

above: g
p K P ol
q q
p - p <
Qg 8 8 log(z
Ke(llk)(z) = ECF { o ED()(Z) = 16@1(2) o 1 f(z)
B D) 36,D0(7) — 4log zlog(1 — 2) +log22
; £ < (1—2) 1—=z2 ’
p o k
q
a L
(1) 8
i mlEi= 47TC’F{E1610g(1z)+810gz

S [_410g2(1 — ) e o el e e 2 3¢s] } :

-

1 do'PiE)
(n)
e ) = o \OG
K(O)(z) 6(1 — 2)
logP(1 —
D, (2) ogl(_ : z)

Laenen, Magnea,
Stavenga, White, 2010



SOFT RADIATION AT THE NEXT-TO-EIKONAL LEVEL
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NE SOFT RADIATION:VIRTUAL + REAL EMISSION

* Is this the end of the story? No:at NNLO, one has to face virtual + real radiation.

‘ "
RO

* Virtual radiation cannot be described in terms of soft gluon only.

* Building an effective field theory describing the process requires one to individuate the relevant

momentum modes. This can be done easily by means of a momentum region analysis.



NE SOFT RADIATION:VIRTUAL + REAL EMISSION

* Decompose momenta along the light-cone directions of the external momenta:

Tl ol
F = (”—DT+ + (n+l)7_ SRR S (s s e ni — p 2
- External momenta have definite scaling in the small parameter )\ = E\S/Of :
\/ s
p p
n n
B - Vi, = po (GG
p p
i e =
prt = n+]57 = Vieies oo S s i (0,0, L)
s s e
kQNL_()\Za)P))\Q)? D= =
2 %
* Virtual gluon can scale according to:
B lanie s g(l, ESIE
Collinear: ki ~ g(l,)\,)ﬁ); e
Anti-collinear: ki ~ g(AQ, Al
V3

Soft: kq ~ 7(>\2,>\2,)\2).

- Expand amplitude in the small parameters appearing in each region.



NE SOFT RADIATION:VIRTUAL + REAL EMISSION

* Calculation can be automatised with FORM; loop integrals in each region are quite easy.
* One finds that contributions arise from the region where the internal gluon is hard or collinear:

{ 256Dy(2) | ~256 + 192Do(2) — 25671 (2)
I8 €3 €2

(87
Ko (2) = 7~ Cr

| 192 —256Do(2) + 1921 () — 128Da(2) — 256 log(1 — 2)

€

— 256 + 256Dy ()

— 256D (z) + 96Dy (2) —

+ 1921og(1 — 2z) — 1281og?(1 — Z)}?

— e

o 256 —64 + 2561log(1 — 2 160 — 641og(1 — 2) + 128 log?(1 — 2
Kll\\ITthOtot(z) L oliigl it g( ) 4 g( ) g ( )
) A1 €3 €2 €

128
= D o1l = ) = 82 le (1L =) == R log®(1 — z)}

NN - g 7 48 log(l S Z)
e () = pp Cr {16 e r

— 361og”(1 — z)},

32 40 — 48log(1 — 2)
g

Qg

NNLO
K external legs =t
(2) 47

NE, c+c

C’F{—4O— +6010g(1—z)—36log2(1—z)}.

€ E

* The sum reproduces the full QCD result.
* Similar conclusion obtained in the context of Higgs production by Anastasiou, Duhr, Dulat,
Herzog, Mistlberger, 201 3.



NE SOFT RADIATION:VIRTUAL + REAL EMISSION

* The momentum region analysis (and old results, see below) shows that there are contributions
from the region where the internal gluon is hard or collinear: schematically

* This contribution (emission of a soft gluon from the hard vertex) cannot occur at the eikonal

level, because the Compton Wavelenght of the soft photon cannot resolve the hard interaction.

* They occur at the NE level, however, and have been studied by Low for massive scalars, then

generalised to spinors by Burnett, Kroll, and then generalised to the case of small mass by Del

Duca (1990). Here we need the limit m — 0.
Low, 1958;
Brunett, Kroll, 1968;
Del Duca, 1990



NE SOFT RADIATION:VIRTUAL + REAL EMISSION

* Consider factorisation of the quark form factor: (Collins, Korchemsky)

I (pz"m')2 2 :
Q2 9 ) (Q2 (pz .ni)z 9 ) 5 - J( n2u2 7048(1u )76)
I' G A ’ =H ) s s ’ xS h s s ’ X -
(u2 as(p”), e P (1%), € (B1 - B2, a5 (1), €) 1;[1 _j<(ﬂi.ng)27as(u2)7€)

2
ng

 where the soft function collects infrared singularities associated with the eikonal term in the
momentum expansion of emitted gluons,

A2
igs/ n - A(An)
A

i

S(B1 - B2, as(p?),€) = (0|®g,(00,0)®g, (0, —00)|0), with @,(\2, A1) = Pexp

)

» and the partonic jet functions are defined as

7 (<p ), ,%w),e) u(p) = (0@ (c0, 0)%(0)] p)

n2 12

(8-m)? 2 i 0
T gz () € ) ulp) = (0]2n(00,0)25, (0, ~00)] 0}
- where () is a wavefunction for the external parton, and the auxiliary vector n ensures that

the definition is gauge-covariant. One must divide by eikonal jet functions in order to avoid the

double-counting of soft and collinear contributions.



NE SOFT RADIATION:VIRTUAL + REAL EMISSION

* The structure of the internal emission can be derived following Del Duca 1990: One split this

contribution according to

FM

int.

=€, ' +¢€,T%

* (emission from the hard and jet functions respectively). Using Ward identities and introducing

the “G” and “K” polarisation tensor:

== 15
2p - k + k2’

* the complete (K+G) emission from the hard function can be combined with the K emission for

kL = —kuL', Ky (pi k) =k,

Gz/,u S T KV,M)

the jet, to give

culk) (TH G, + T) Zqz uloisk) | =5 - T({pi}) + H({pHS({5:)

* i.e,, internal emission contrlbutlons are generated by derivatives acting on the hard functlon with

TL] ,

no emission, which in a sense shows an iterative structure as well. The remaining G-emission

from the current reads

T Gy e( Zﬂ{pz SHB:HI (D1, &, )G (Di3 HJpg,n]

* which is not simply given by derlvatlves acting on the hard function, but depends on a universal

* function as well.



NE SOFT RADIATION:VIRTUAL + REAL EMISSION

* Calculation of

I (L )ik ) = (0 [ atye 19, (41,0000 (O] ).

e

* is non trivial:

e  — fr — P (F — o)y u(p)
J[3] =129, C/[dk1] (0 — k1 — k2)2(p — k2)2(2n - k1)k2

(P — #1 — Ko7 (P — K1)rlu(p)

=i dk ;
J[4] (4 QSC/[ 1](p—k1 —]{2)2(]9—]61)2(271‘]{1)]6%



NE SOFT RADIATION:VIRTUAL + REAL EMISSION

» Calculation is non trivial, but one expect a relatively simple result!

* For instance, n-dependence must cancel from the full result, and we expect it to occur already at
the level of the amplitude:

en(k) (T7(KH +GH) +Ty)
* this gives already quite some strong constraints on the structure of the result.

* However, this simplicity is not apparent in the calculation: for instance, one cannot expand in k;
before integration over k;: the integrals become ill-defined. Similarly, one encounters problems
assuming some special choice of n, such as n?2 = 0.

* Result for J* is completed. For instance
oty =253 [sp-n(af? 21+ 49) — 2n2(al — D] + ks nirl — 1) + 202
bkt | = 2pnll! = 1) + 022l 4 2 ka0l — 1) - (@ - 1) - 2 e}

oyt | = 2 n(af) - 25+ 23| = 2| 1 — 1] 4 2o | ) 4 1]+ 2| 19| i)

* where, for instance,



NE SOFT RADIATION:VIRTUAL + REAL EMISSION

* Note: preliminar!

lo n”
1 1l 1) g(4 n2)
(IH—2I£1]—|—I£]) {— }—I——{—Q— () }

€2 8p - kap-n € 8p-kap-n

—48 4+ 1172 i 3n’p-ke —4m?n?p ko +6n -kap-n i n?log(2p - ko)? i log(2p - ks)?

96p - kap-n 12p - ko (p - n)? 4(p-n)3 8p-kap-n
2 2 2 2 2
(3n?p- ko —n-k2p-n)log (ﬁ) n? log (ﬁ) log ((2p n)Q)
B - +
4p - k2 (p-n)? 4(p - n)3 16p - kap - n
log(2p - ko) (1 + log (W))
i 4p - kop-n
log(2p-k2)( In’p-ka+n-kap-n—2n?p- kylog (ﬁ))
ol 7
4p - k2 (p - n)3
2 2 2
(1[4] N 1[4]) o 7T2 o 1og(2p . k2)2 3 log ((2p )2) log ((Qp n)2>
B 6(p-n)2  8(p-n)?) 2(p - n)? 8(p-n)?

log(2p - k2) (2 + log ((219 1)2)>
4(p - n)? ,




OUTLOOK

Soft gluons exponentiate at leading (eikonal) order. Their resummation is important to get
precise prediction for scattering processes at hadron colliders.

It has been observed that some of the logs originating from soft gluon at the sub-leading order
(NE) exponentiate, too. Their inclusion can be phenomenologically relevant.

We prove that soft gluon emission from external energetic partons exponentiate at the NE
level, too, provided one extends the standard description in terms of soft gluon webs,

introducing next-to-eikonal webs.

We analysed Drell-Yan at NNLO, showing that reproducing all the logs at the NE level requires
taking into account soft gluon emission from the hard and the hard-collinear interaction.

This can be implemented in the contest of the Low-Burnett-Kroll-Del Duca formulation of
factorisation at the sub-leading order.Verification that all the logs can be reproduced in this

framework is in progress.
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SOFT RADIATION IN DRELL-YAN AND E

100 F

F(y,mr)

do L dz

N a
dTQ? oy /T ?Uqci(z,@,ﬂ) Lag (;,M) ,

e i) (15 becomes

* While for 7 2 0.3

dQ?

_LECTROWEAK ANNIHILATION

Becher, Neubert, 2007

do 1dzA 1—7/2\"
Nﬁqq(ﬂ/ﬁ)/ ?qu(ZaQ,M) ( / ) :

| e

1l —7

* The z integral receives important contributions from the region (1 —z) < 7 with b~10.

 Even for T values not near | there is a parametric enhancement of the partonic threshold region,

which turns the threshold logarithms into logarithms of the exponent b.




